непрерывный в - definizione. Che cos'è непрерывный в
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è непрерывный в - definizione

ТИП ОТОБРАЖЕНИЯ МЕЖДУ ПРОСТРАНСТВАМИ В МАТЕМАТИКЕ
Непрерывный оператор; Непрерывный функционал; Свойства функций, непрерывных в точке; Непрерывность (математика); Разрывная функция; Непрерывность функции

Линейный непрерывный оператор         
Линейный непрерывный функционал; Непрерывный линейный оператор; Ограниченный линейный оператор
Линейный непрерывный оператор A:X\rightarrow Y, действующий из линейного топологического пространства  в линейное топологическое пространство  — это линейное отображение из  в , обладающее свойством непрерывности.
РАЗРЫВНАЯ ФУНКЦИЯ         
функция, имеющая разрыв в некоторых точках (см. Разрыва точка). У функций, встречающихся в применениях математики, точки разрыва обычно изолированы, но существуют функции, для которых все точки являются точками разрыва.
Непрерывное отображение         
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.

Wikipedia

Непрерывное отображение

Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.

Наиболее общее определение формулируется для отображений топологических пространств: непрерывным считается отображение, при котором прообраз всякого открытого множества открыт. Непрерывность отображений других типов пространств — метрических, нормированных и тому подобных пространств — является непосредственным следствием общего (топологического) определения, но формулируется с использованием структур, заданных в соответствующих пространствах — метрики, нормы и так далее.

В математическом анализе и комплексном анализе, где рассматриваются числовые функции и их обобщения на случай многомерных пространств, непрерывность функции вводится на языке пределов: такие определения непрерывности были исторически первыми и послужили основой для формирования общего понятия.

Существование непрерывных отображений между пространствами, позволяет «переносить» свойства одного пространства в другое: например, непрерывный образ компактного пространства также является компактным.

Непрерывное отображение, которое обладает обратным и также непрерывным отображением, называется гомеоморфизмом. Гомеоморфизм порождает на классе топологических пространств отношение эквивалентности; пространства, гомеоморфные друг другу, обладают одними и теми же топологическими свойствами, а сами свойства, которые сохраняются при гомеоморфизмах, называются топологическими инвариантами.

Che cos'è Линейный непрерывный оператор - definizione